

Methods for Wastewater Disease Surveillance: A Reagent Manufacturer's Perspective

Presented by:
Subhanjan Mondal, Ph.D.
Sr. Research Scientist

Our "Wastewater Surveillance Journey"

SARS-CoV-2 detected in wastewater Interlaboratory
Study
Participation ->

Direct Capture Method developed

Kits available in catalogue

Automation Kits including Ceres Nanotrap® A

March 2020

April 2020

Spring 2020

July 2020

October 2020

Q2 2021 Nov 2021

Q1 2022

Adoption in >50 countries

Global Wastewater Surveillance Summit RT-qPCR
Detection kit for
wastewater
including quant
standards and
controls

Method validation paper in STOTEN

acid enables epidemiological surveillance of SARS-CoV-2

Subhanjan Mondal**, Nathan Feirer*, Michael Brockman, Melanie A. Preston, Sarah J. Teter, Dongping Ma, Said A. Goueli, Sameer Moorji, Brigitta Saul, James J. Cali

Additional methods and qPCR Kits under development

Ongoing

Challenges of Wastewater Samples for Molecular Biology

- Sample composition greatly varies between locations/sewersheds
- Analytes are present in low abundance
- Wastewater contains compounds that inhibit PCR
- "Solids" vs "Liquid" phase which one to use?
- Simple, scalable and consistent workflow is needed for surveillance.

Madison Metropolitan Sewerage District

The Wastewater: A simplistic view

Dietary Fibers (cellulosic)

Tissue paper (cellulosic)

Particulates (silica)

Chemicals

- Urea
- Detergents
- Salts

PCR inhibitors

- Bilirubin
- Humic acid
- Fulvic acid

Virus

Bacteria

Nucleic acid protected

The Inspiration: Sewage, Salt, Silica and SARS-CoV2 (4S) method

Elute concentrated RNA

Sewage, Salt, Silica, and SARS-CoV-2 (4S): An Economical Kit-Free Method for Direct Capture of SARS-CoV-2 RNA from Wastewater

Oscar N. Whitney, Lauren C. Kennedy, Vinson B. Fan, Adrian Hinkle, Rose Kantor, Hannah Greenwald, Alexander Crits-Christoph, Basem Al-Shayeb, Mira Chaplin, Anna C. Maurer, Robert Tjian, and Kara L. Nelson*

Sample Concentration

Wizard® Enviro TNA Kit

Direct Capture & Spin column

Maxwell RSC® Enviro TNA Kit

Direct Capture & Maxwell® RSC Cartridges

Advantages of Direct TNA Capture

Total Nucleic Acid concentration

- 40 ml input provides higher yield than PEG/NaCl Method
- Consistent Recovery is ideal for surveillance

Recovery of SARS-CoV-2 genetic material was more than 20-times more than the PEG/NaCl method. Mondal et al, 2021

% Recovery of Direct Capture Method			
Spike virus*	% Recovery		
MS2 phage	39.67 ± 10.66		
OC43 coronavirus	63.13 ± 4.16		
229E coronavirus	40.09 ± 10.36		

- Consistent yield
- Good Recovery

High Yield and Quality for Sequencing

Case Report

Evaluation of viral concentration and extraction methods for SARS-CoV-2 recovery from wastewater using droplet digital and quantitative RT-PCR

Lampros Dimitrakopoulos¹, Aikaterini Kontou¹, Areti Strati, Aikaterini Galani, Marios Kostakis, Vasileios Kapes, Evrikleia Lianidou, Nikolaos Thomaidis^{**}, Athina Markou^{*}

Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, University Campus, Zografou, 15771, Athens, Greece

Enviro TNA kits yield more nucleic acid from a smaller sample volume than other methods

Evaluation of two different concentration methods for surveillance of human viruses in sewage and their effects on SARS-CoV-2 sequencing

Inés Girón-Guzmán ^{a,1}, Azahara Díaz-Reolid ^{a,1}, Enric Cuevas-Ferrando ^a, Irene Falcó ^a, Pablo Cano-Jiménez ^{b,c}, Iñaki Comas ^{b,c}, Alba Pérez-Cataluña ^{a,*}, Gloria Sánchez ^a

- a Department of Preservation and Food Safety Technologies, Institute of Agrochemistry and Food Technology, IATA-CSIC, Av. Agustín Escardino 7, Paterna 46980, Valencia, Spain
- b Instituto de Biomedicina de Valencia (IBV-CSIC), C/ Jaume Roig, 11, Valencia 46010, Spain
- ^c CIBER in Epidemiology and Public Health (CIBERESP), Valencia, Spain

TNA purified using AlCl3 ppt

TNA purified using Maxwell® Enviro TNA

Enviro TNA purified nucleic acid provides high quality sequencing data

New Purification Methods: Going after the "solids"

- Nucleic acid concentrations are 1-3 orders of magnitude higher in the solid fraction than the liquid fraction
- Require smaller volumes: simple and scalable
- Eliminate any purification bias
- Steps to effectively remove PCR inhibitors

Detection and Quantification

Sample concentration

Direct TNA capture

Nucleic Acid Extraction

- Manual Spin column
- Automated Extraction

Detection and Quantification

- PCR
- Sequencing

GoTaq® Enviro qPCR kits made for wastewater surveillance:

- ➤ PCR inhibitor tolerant qPCR and RT-qPCR Master-Mix
- Multiplexed to include process control (PMMoV or CrAssphage)
- > Quantitation standard RNA/DNA included

Design of the Wastewater SARS-CoV-2 RT-qPCR Detection Kit

	Detection Channel in Multiplex			
Cat.#	FAM	HEX	ROX	Cy5
AM2150	N1	N2	IAC	PMMoV
AM2160	Е	N2	IAC	PMMoV
AM2100-2130	N1, N2, or E	IAC		PMMoV
CS317431	Flu A	Flu B	SC2	PMMoV

Quantitation Standard RNAs are available for: SARS-CoV-2 (N+E), SC2, PMMoV, FluA, FluB

Assays with Proper QA/QC controls

Quantitation Standards

Quantify RNA using QuantiFluor RNA System and droplet digital RT-PCR.

Dilute the RNA at 4x10⁶ copies/ul in TE-Buffer + protectant

remove plasmid DNA

Human Fecal Control

Pepper mild mottle virus

- An RNA plant virus that is commonly found in human feces (diet)
- It is present in wastewater globally and serves as human fecal indicator

PMMoV levels in wastewater from one sampling point over multiple days provided by Zeynep Cetecioglu, KTH, Stockholm

Internal Amplification Control

- An exogenous RNA that is in every qPCR assay serving as an amplification control
- Template for the Internal control used is Firefly Luciferase RNA

A shift in Cq value from the no template control (NTC) reflects the level of RT-qPCR inhibition in a sample.

$$\Delta Cq = Cq_{[Sample]} - Cq_{[NTC]}$$

 Δ Cq > 2 represents significant inhibition of the reaction

Application scientists develop additional applications:

Where Next?

Now that the COVID-19 pandemic is behind us, how do we sustain the surveillance system that was set up during the pandemic

- Targets?
- What sample-type to use thats best for the targets
- What throughput

Please stop by our booth Reach us at: applied@promega.com

