
Fighting Antibiotic Resistance in the Environment

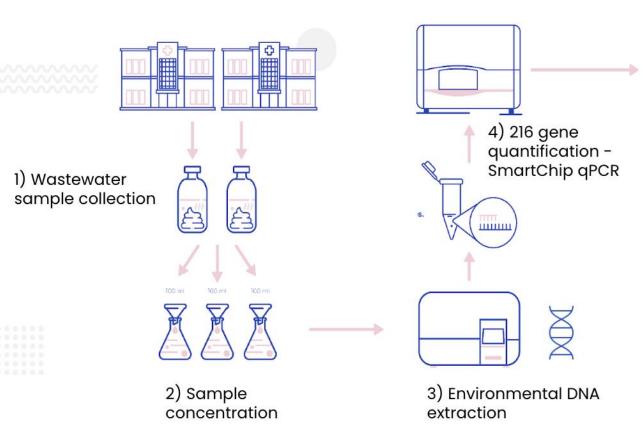

Wastewater-based monitoring of antibiotic resistance and pathogens in hospitals

Antibiotic resistance spread in the environment

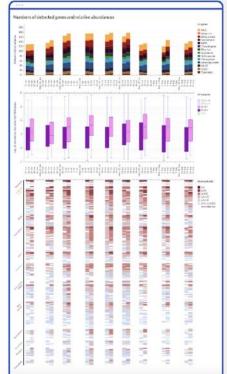
Research Objectives

Triangle Hospital (HUS1)

New Children's Hospital (HUS2)



193 beds 125 beds



2249 (DDD*/ 1000 patients) 351 (DDD*/ 1000 patients)

Methodology

5) ResistApp: Data analysis and visualisation

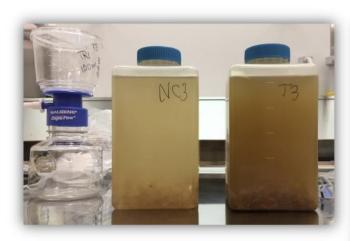
Wastewater Sample

Collection

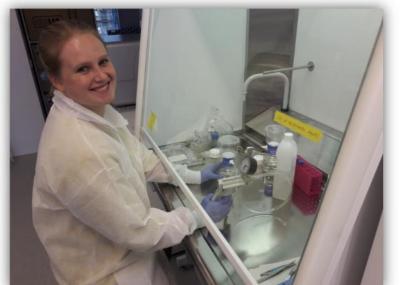
June 2020

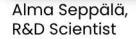
July 2020

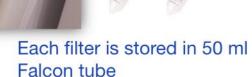
August 2020


Weekly

at 08:00 am


Jesse Majlander, Operations Manager

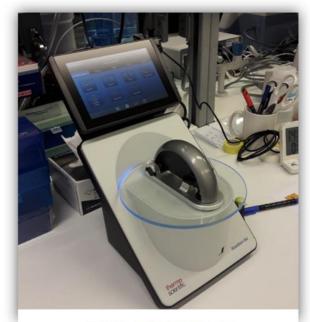

Wastewater Sample


Concentration

100 ml of wastewater sample Nalgene disposable filter units with **PES membrane** (pore size: **0,22 µm**, diameter: 45 mm)

Store in -20°C

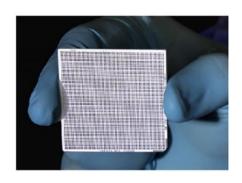
Environmental DNA


Extraction

DNA Isolation Kit

DNA Measurement

NonoDrop One


Optimal measurement for the analysis

- 1.7-2.1 (DNA quality)
- 10 ng/ul (DNA concentration)
- 100 ul (DNA Volume)

Sample Metadata

			D	E					
	* Indicates requi	red fields.							
2	Tube label								
4	Tube label Sample Bio number replica	*Sample description	*Sample type	*DNA quality (1.8 – 2 ±0.1, 260/280 ratio)	*DNA concentration (10 ng/µl)	*Volume (100 µl)	*Sample collection date (2020-12-31)	Country	Latitude, longitude (60.170451, 24.939575)
5	49 A	HUS1	Waste water	1.85	10.00	100.00	2020-06-18 08:00	Finland	60.188819, 24.907161
6	50 A	HUS1	Waste water	1.89	10.00	100.00	2020-06-25 08:00	Finland	60.188819, 24.907161
7	51 A	HUS1	Waste water	1.88	10.00	100.00	2020-07-01 08:00	Finland	60.188819, 24.907161
8	52 A	HUS1	Waste water	1.95	10.00	100.00	2020-07-09 08:00	Finland	60.188819, 24.907161
9	53 A	HUS1	Waste water	1.84	10.00	100.00	2020-07-16 08:00	Finland	60.188819, 24.907161
10	54 A	HUS1	Waste water	1.86	10.00	100.00	2020-07-22 08:00	Finland	60.188819, 24.907161
11	55 A	HUS1	Waste water	1.85	10.00	100.00	2020-07-28 08:00	Finland	60.188819, 24.907161
12	56 A	HUS1	Waste water	1.83	10.00	100.00	2020-08-05 08:00	Finland	60.188819, 24.907161
13	57 A	HUS1	Waste water	1.86	10.00	100.00	2020-08-13 08:00	Finland	60.188819, 24.907161
14	66 A	HUS2	Waste water	1.83	10.00	100.00	2020-06-18 08:00	Finland	60.187173, 24.910124
15	67 A	HUS2	Waste water	1.90	10.00	100.00	2020-06-25 08:00	Finland	60.187173, 24.910124
16	68 A	HUS2	Waste water	1.80	10.00	100.00	2020-07-01 08:00	Finland	60.187173, 24.910124
17	69 A	HUS2	Waste water	1.86	10.00	100.00	2020-07-09 08:00	Finland	60.187173, 24.910124
18	70 A	HUS2	Waste water	1.84	10.00	100.00	2020-07-16 08:00	Finland	60.187173, 24.910124
19	71 A	HUS2	Waste water	1.88	10.00	100.00	2020-07-22 08:00	Finland	60.187173, 24.910124
20	72 A	HUS2	Waste water	1.84	10.00	100.00	2020-07-28 08:00	Finland	60.187173, 24.910124
21	73 A	HUS2	Waste water	1.87	10.00	100.00	2020-08-05 08:00	Finland	60.187173, 24.910124
22	74 A	HUS2	Waste water	1.85	10.00	100.00	2020-08-13 08:00	Finland	60.187173, 24.910124
23	104 A	NTC-A	Other	0.00	0.00	100.00	2020-06-07	Finland	,
24	105 A	NTC-B	Other	0.00	0.00	100.00	2020-06-07	Finland	,
25				~				-	,

Gene Quantification

5,184 100-nl reactions/chip

Sample/ Genes Assays dispense in <1 hour

Thermal cycle and collect data in 2.25 hours

SmartChip qPCR (Takara Bio)

SmartChip qPCR

Flexible Configuration

Flexibility of the SmartChip™ platform allows for high gene-content screening and high-throughput monitoring configurations

Genes	12	24	36	48	54	72	80	96	120	144	216	248	296	384	
Samples	128	72	48	36	32	24	21	18	14	12	8	6	5	4	

Primer Set Update

FEMS Microbiology Ecology, 94, 2018, fiy130

doi: 10.1093/femsec/fiy130 Advance Access Publication Date: 23 July 2018 Research Article

RESEARCH ARTICLE

Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements

Robert D. Stedtfeld^{1,†}, Xueping Guo^{2,3,4,†}, Tiffany M. Stedtfeld¹, Hongjie Sheng^{3,4,6}, Maggie R. Williams¹, Kristin Hauschild⁴, Santosh Gunturu⁴, Leo Tift⁴, Fang Wang^{3,4,6}, Adina Howe⁵, Benli Chai⁴, Daqiang Yin², James R. Cole^{3,4}, James M. Tiedje^{3,4} and Syed A. Hashsham^{1,3,4,*}

¹Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA, ²State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China, ³Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA, ⁴Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA, ⁵Department of Agricultural and Biosystems Engineering, Iowa

Primer Sets - ARG 2.1 (2023)

- Insilico test against updated database (NCBI, CARD, ResFinder)
- NTC Analysis (false positives)
- Tm Analysis (melting curve)
- Add primer sets for group of bacteria including three for HAI Pathogens

Selected	Assay	Gene	Target antibiotics (major)
	AY473	A. baumannii	Taxanomic
	AY474	Bacteroidetes	Taxanomic
	AY475	Campylobacter	Taxanomic
	AY476	Enterococci	Taxanomic
	AY477	Firmicutes	Taxanomic
	AY478	K. pneumoniae	Taxanomic
	AY479	P. aeruginosa	Taxanomic
	AY480	Staphylococci	Taxanomic

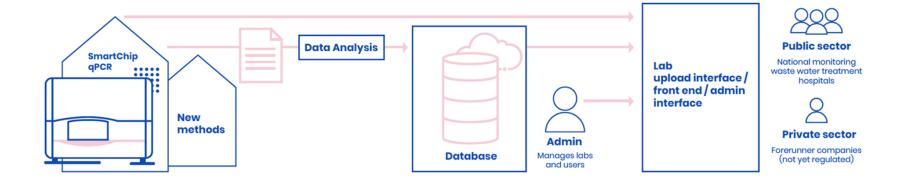
Gene Selection

Target Gene by Group	Number of Primer Sets
16S rRNA gene	2
Aminoglycoside	79
Beta Lactam	106
Integrons	8
MDR	73
MGE	53
MLSB	80
Phenicol	26
Quinolone	n
Sulfonamide	12
Taxonomic	20
Tetracycline	57
Trimethoprim	19
Vancomycin	41
Other	33
Total	620

Chip Customisation

Target Gene by Group	Number of Primer Sets
16S rRNA gene	1
Aminoglycoside	30
Beta Lactam (Carbapenem)	32 (8)
Integrons	4
MDR	20
MGE	28
MLSB	15
Phenicol	13
Quinolone	8
Sulfonamide	4
Taxonomic (HAI Pathogens)	8 (3)
Tetracycline	20
Trimethoprim	7
Vancomycin	13
Other	13
Total	216

SmartChip qPCR Raw Data


	•			Chip	1.txt			
Row	Column	Assay	Sample Conc	Ct	Tm	Efficie	ency	Flags
0	0	AY1	1A-rep1 -1	13.97	81.89	1.97		
1	0	AY1	2A-rep2 -1	15.05	81.98	1.98		
2 3	0	AY1	3A-rep3 −1	14.38	82.22	1.95		
	0	AY1	5A-rep1 -1	13.50	82.26	1.98		
4	0	AY1	11A-rep3	-1	13.65	82.57	1.98	
5 6	0	AY1	13A-rep1	-1	14.54	82.06	2.04	
	0	AY1	14A-rep2	-1	15.25	81.91	1.94	
7	0	AY1	15A-rep3	-1	13.93	82.24	1.99	
8	0	AY1	22A-rep2	-1	14.07	82.23	1.96	
9	18	AY1	1A-rep2 −1	14.51	82.16	1.98		
10	18	AY1	2A-rep3 -1	15.41	82.04	1.97		
11	18	AY1	4A-rep1 -1	13.72	82.24	1.99		
12	18	AY1	5A-rep2 -1	13.68	82.18	2.00		
13	18	AY1	12A-rep1	-1	18.92	81.88	1.96	
14	18	AY1	13A-rep2	-1	14.54	81.85	2.06	
15	18	AY1	14A-rep3	-1	15.58	81.92	1.99	
16	18	AY1	16A-rep1	-1	12.00	81.98	2.01	
17	18	AY1	22A-rep3	-1	13.98	82.04	1.98	
18	36	AY1	1A-rep3 -1	14.46	82.00	1.98		
19	36	AY1	3A-rep1 -1	14.37	82.01	1.97		
20	36	AY1	4A-rep2 -1	13.49	82.12	1.99		
21	36	AY1	5A-rep3 -1	13.68	82.07	2.01		
22	36	AY1	12A-rep2	-1	18.71	81.72	1.94	
23	36	AY1	13A-rep3	-1	14.45	81.72	2.05	
24	36	AY1	15A-rep1	-1	13.66	81.93	2.00	
25	36	AY1	16A-rep2	-1	11.90	81.85	1.99	
26	36	AY1	23A-rep1	-1	13.48	81.85	2.01	
27	54	AY1	2A-rep1 -1	15.10	81.85	1.97		
28	54	AY1	3A-rep2 -1	14.14	81.92	1.99		

Automated Data Analysis

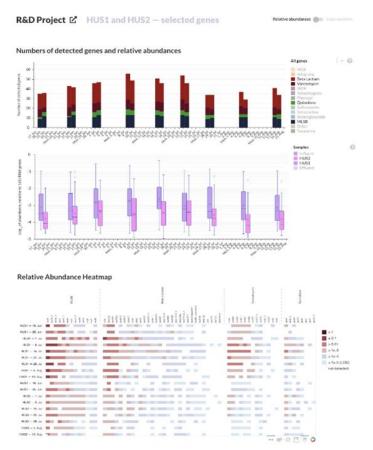
ResistAppCloud system
Python program

Data Flow

Data Access

Email Address
windi@resistomap.com
Password *
•••••
✓ I accept the <u>privacy policy</u> & anonymous usage tracking.
Log In

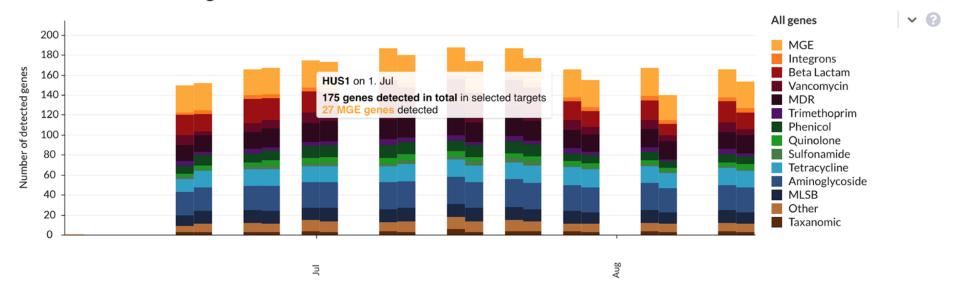
Resistomap oy


Cultivator II, Viikinkaari 4, Helsinki copyright © 2020 Resistomap

Data Output

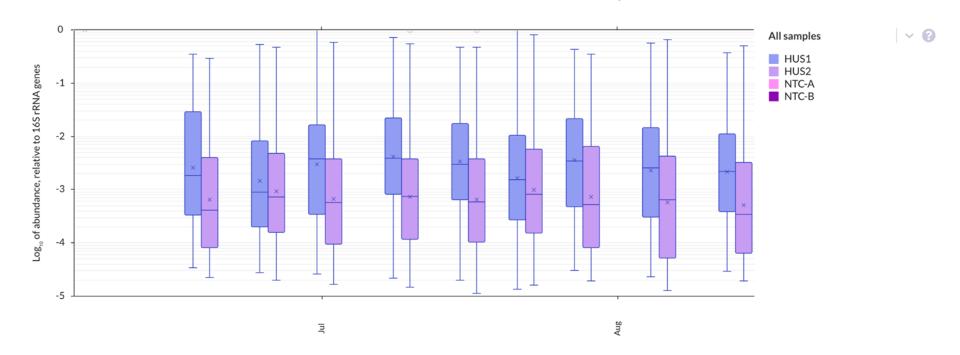
ResistApp Interactive Web Online Report

- Numbers of detected genes
- Genes relative abundances
- Genes copy numbers
- ✓ Heatmap



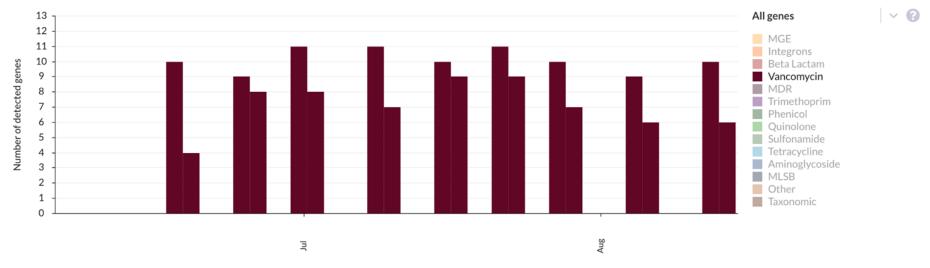
Antibiotic resistance monitoring in hospital wastewater 🗹

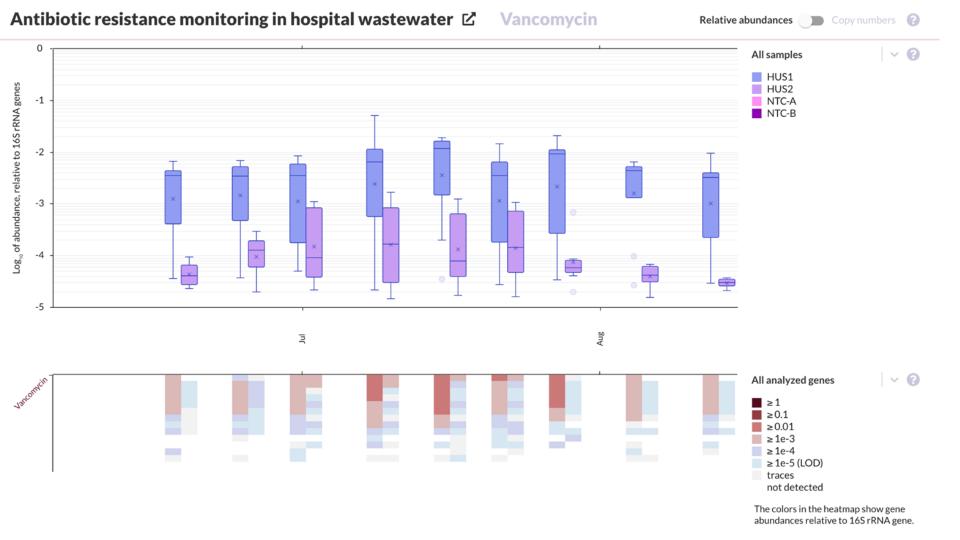
Relative abundances Copy numbers



Numbers of detected genes and relative abundances

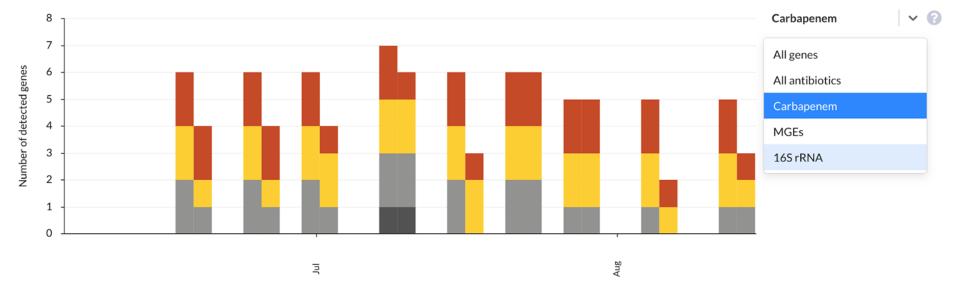
Antibiotic resistance monitoring in hospital wastewater 🗹

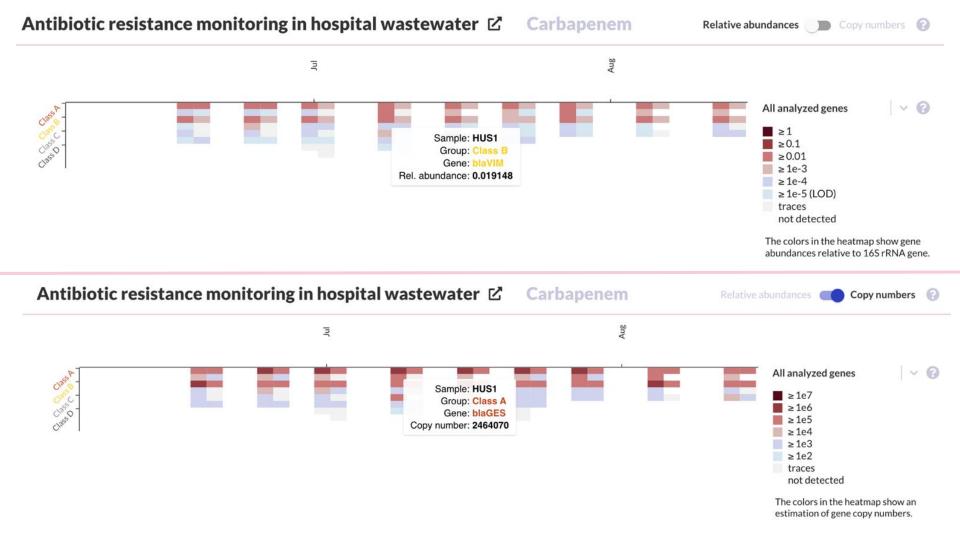



Vancomycin

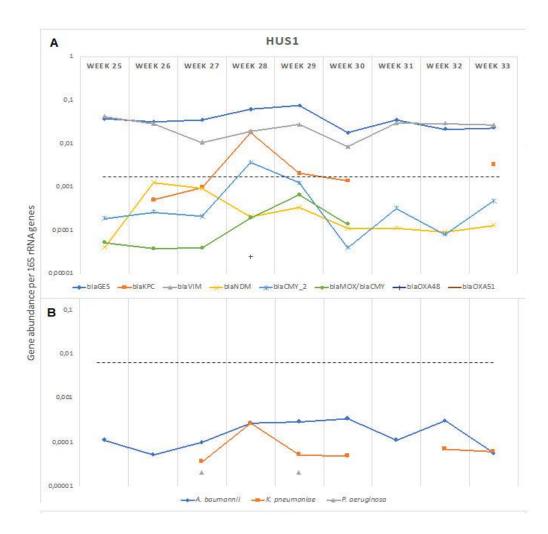
Relative abundances Copy numbers

Numbers of detected genes and relative abundances




Antibiotic resistance monitoring in hospital wastewater ☑

Carbapenem Relative abundances Copy numbers


Numbers of detected genes and copy numbers

Carbapenem resistance gene abundances in HUS 1

- Positive correlation between blaKPC and K. pneumoniae
- Spearman's ρ = 0.99, pvalue < 0.01

Data Publication

Journal of Hospital Infection Volume 117, November 2021, Pages 157-164

Routine wastewater-based monitoring of antibiotic resistance in two Finnish hospitals: focus on carbapenem resistance genes and genes associated with bacteria causing hospital-acquired infections

J. Majlander ^a, V-J. Anttila ^b, W. Nurmi ^a, A. Seppälä ^a, J. Tiedje ^c, W. Muziasari ^a $\stackrel{\triangle}{\sim}$ $\stackrel{\boxtimes}{\bowtie}$

Show more 🗸

BUSINESS FINLAND Project No. 287/31/2020

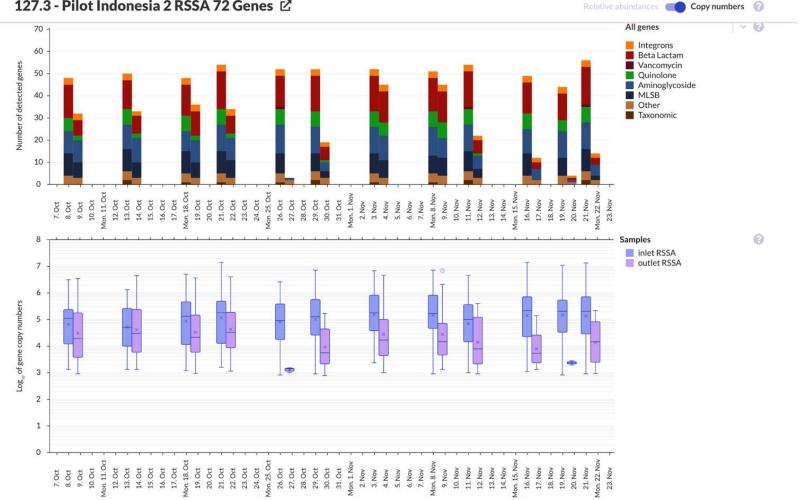
BUSINESS PARTNERSHIP SUPPORT (GRANT)

MATCHMAKING SERVICE

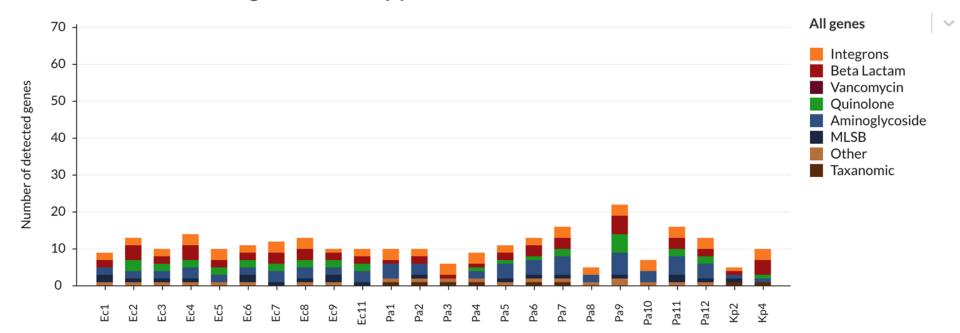
GLOBAL GATEWAY CAMPAIGN

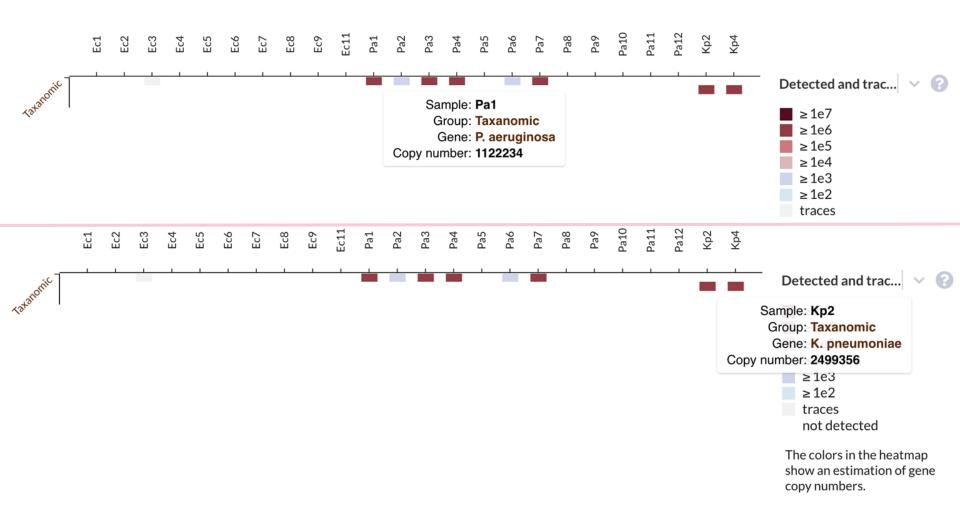
Data Publication

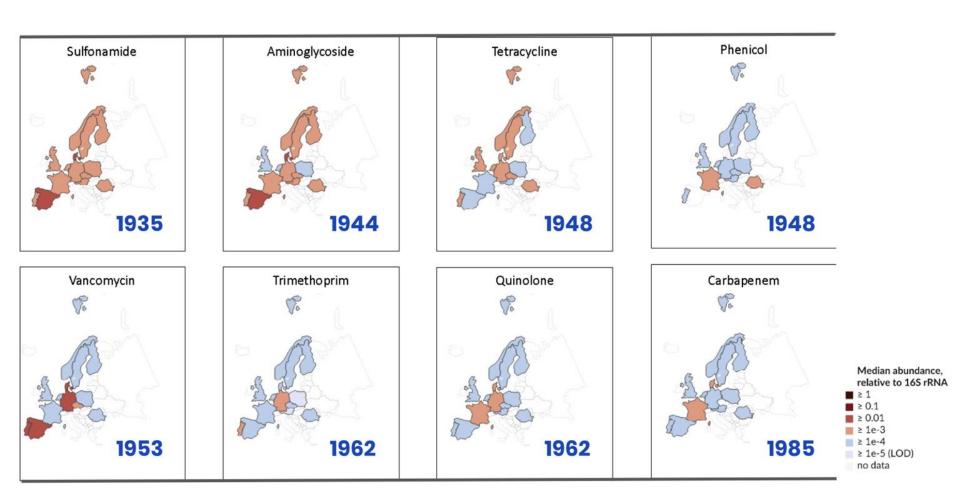
Article


Prevalence and Abundance of Beta-Lactam Resistance Genes in Hospital Wastewater and Enterobacterales Wastewater Isolates

Dewi Santosaningsih 1,2,*, Aulia Putri Fadriyana 3, Nathanael Ibot David 3 and Irene Ratridewi 4,5


- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- Department of Clinical Microbiology, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
- ³ Biomedical Sciences Master Program, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- Department of Pediatrics, Faculty of Medicine, Universitas Brawijaya, Malang 65145, Indonesia
- ⁵ Department of Pediatrics, Dr. Saiful Anwar Hospital, Malang 65112, Indonesia
- * Correspondence: dewi.santosa@ub.ac.id


Abstract: Antimicrobial resistance may develop in nature including in hospital wastewater through horizontal genetic transfer. Few studies were conducted on the antimicrobial resistance genes in hospital wastewater and wastewater isolates in Indonesia. The prevalence and abundance of beta-lactam


127.3 - Pilot Indonesia 2 RSSA 72 Genes 🗹

Numbers of detected genes and copy numbers

What's Next?

Who will use the data?

How the data will be used?

What and where to monitor?

THANK

YOU

Windi Muziasari, PhD CEO of Resistomap

E: windi@resistomap.com

P:+358 405749020

www.resistomap.com